

Higgs and Supersymmetry

Orsay, 19-23 march, 2001

Charged Higgs at LHC

R. Kinnunen

Helsinki Institute of Physics

How to look for H[±] at LHC

- i) if $m_{H^+} < m_{top}$ use $t\bar{t}$ production with $t \rightarrow bH^{\pm}$, $H^{\pm} \rightarrow \tau v$ (cs)
- ii) if $m_{H+} > m_{top}$ (more interesting) production studied in detail up to now:

gg ->
$$tbH^+$$

followed by H^+ -> τv or H^+ -> tb

largest reach obtained in $H^+ \rightarrow \tau \nu$, $\tau \rightarrow$ hadronic decay (" τ -jet")

In some cases (γγ, bb) the neutral Higgs bosons may be hard to distinguish from the Standard Model Higgs at LHC →

Observation of a charged Higgs would clearly signal that there is physics beyond SM (SUSY)

H^+ production in gb -> tH^{\pm} and gg -> tbH^{\pm}

Good agreement between PYTHIA and theory for $m_{H\pm} \gtrsim 300 \text{ GeV}$

Branching ratios for H⁺, HDECAY

no stop mixing

Branching ratios, H⁺

Example with large stop mixing and light stop: A_t = 1400 GeV, m_{stop} = 200 GeV Appearence of sparticle decay modes

$H^{\pm} \rightarrow \tau v$ in tbH^{\pm} production

- Signal and backgrounds generated with PYTHIA
 - + TAUOLA to account for τ-spin correlations
- Main backgrounds considered:

Detector response simulation:

- i) b-tagging aspects studied in detail with CMSIM and parametrized for fast simulation
- ii) fast CMS detector simulation (CMSJET)

It turns out that H^{\pm} -> $\tau \nu$ with τ -> π^{\pm} + ν is the most promising channel thanks to the spin correlations in this mode as pointed out to us by D.P. Roy

τ polarization in H⁺ -> τV

Spin correlations in $\tau^+ \to \pi^+ \nu$ from $H^+ \to \tau^+ \nu$ and $W^+ \to \tau^+ \nu$:

 $H^+ \to \tau^+ \nu$ leads to harder pions from $\tau^+ \to \pi^+ \nu$ and from the longidutinal components of ρ and a_1 than the corresponding decays in $W^+ \to \tau^+ \nu$

Main contributions to 1-prong τ decays:

$$\tau^{+} \rightarrow \pi^{+} \nu$$
 12.5%
 $\tau^{+} \rightarrow \rho^{+} \nu \rightarrow \pi^{+} \pi^{0} \nu$ 26%
 $\tau^{+} \rightarrow a_{1} \nu \rightarrow \pi^{+} \pi^{0} \pi^{0} \nu$ 7.5%

Fraction of τ -jet energy carried by a single pion

τ decay with TAUOLA, all hadronic τ decay channels included Reconstructed τ -jets, E_t^{τ -jet} > 100 GeV

Large background reduction is obtained with the τ selection:

Selection efficiency for	H^+ (200,15)	$H^+(400,23)$	tt
$E_t^{\tau - jet} > 100 \text{ GeV}$	28.1%	65.4%	8.2%
$p^{hadron}/E^{\tau-jet} > 0.8$	26.4%	27.4%	5.2%
Total τ selection	7.4%	17.9%	0.4%

Event selection for tbH^+ , $H^+ \rightarrow \tau \nu$, $\tau \rightarrow hadron + X$, $t \rightarrow jets$

τ selection:	jet, $E_t > 100$ GeV, $ \eta < 2.5$ containing one track with $r = p^h/E^{jet} > 0.8$, $\Delta R(jet,track) < 0.1$
Missing E _t cut:	$E_t^{\text{miss}} > 100 \text{ GeV}$
W and top mass reconstruction:	in addition 3 jets (excluding τ -jet) with $E_t > 20$ GeV minimization of $\chi = (m_{jj}$ - m_W) $^2 + (m_{jjj}$ - m_{top}) 2 m_{jj} - m_W < 20 GeV, 110 GeV < m_{jjj} < 220 GeV
B-tagging:	jet not assigned to W is b-jet canditate: $E_t > 30$ GeV, efficiency of 50% for b-jets, 1.3 % for non-b-jets assumed
Selection furthe	r improved by:
Second top veto:	$m(\tau\text{-jet}, E_t^{\text{miss}}, \text{jet}) > 300 \text{ GeV}$
$\Delta \phi$ -cut	$\Delta \phi(\tau\text{-jet}, E_t^{\text{miss}}) > 60^0$

$\Delta \phi(\tau$ -jet, $\mathbf{E_t}^{\mathbf{miss}})$

10⁴pb⁻¹ with a pileup of 2 min. bias events superimposed

Small opening angle for $t\bar{t}$ background due to hard E_t cuts and hadronic decay of the associated top

For $\Delta\phi(\tau\text{-jet,}E_t^{\text{miss}}) > 60^{\circ}$ almost background-free signal can be obtained

Reconstructed τ-jet

Top and W mass

Reconstructed minimizing $(m_{jjj} - m_{top})^2 + (m_{jj} - m_W)^2$ pileup of 2 minimum bias events superimposed

Efficiency for selection cuts, signal and backgrounds, $10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

m_{H+} , $taneta$	(200,15)	(400,23)	tŧ	Wtb	W+jet
$E_t > 100 \text{ GeV}$ $p^h / E^{jet} > 0.8$ $total \ \tau \text{ selection}$	28.1% 26.4% 7.4%	65.4% 27.4% 17.9%	8.2% 5.2% 0.4%	3.9% 5.9% 0.2%	3.7% 9.6% 0.36%
$E_t^{\text{miss}} > 100 \text{ GeV}$	28.7%	74.7%	37.6%	28.4%	42.1%
W and top mass reconstruction:	42.7%	38.9%	46.1%	30.9%	6.5%
B-tagging	50%	50%	50%	50%	1.3%
Second top veto	87.7%	95.6%	47.0%	77.5%	75.3%
$\Delta \phi(\tau\text{-jet,}E_t^{\text{miss}}) > 60^{\circ}$	53.2%	90.3%	-	-	-

Signal superimposed on the total background, 3*10⁴pb⁻¹

with basic selection cuts, $m_A = 400 \text{ GeV}$

Signal superimposed on the total background, 3*10⁴pb⁻¹

with selection cuts for $m_A = 200 \text{ GeV}$

Events for signal and backgrounds for 3*10⁴pb⁻¹ with selection cuts

	$m_T^{\tau V} > 100 \text{ GeV}$	$m_T^{\tau V} > 100 \text{ GeV}$ $m_{top2} > 300 \text{ GeV}$	$\Delta \phi(\tau$ -jet, $E_t^{miss}) > 60^{o}$
Signal, $m_A = 200$ GeV, $tan\beta = 15$	17.0	13.1	12.5
Signal, $m_A = 400$ GeV, $tan\beta = 23$	10.7	9.6	10.2
Signal, $m_A = 600$ GeV, $tan\beta = 40$	11.0	10.2	10.6
tť	2.4	2.4	< 0.8
W+jet	< 0.6	< 0.6	< 0.6
Wtb	< 0.2	< 0.2	< 0.2
Total background	2.4	2.4	< 1

H^+ mass determination from $m_T(\tau$ -jet, E_t^{miss})

A 4-parameter fit of the form:
$$\frac{dN}{dm_T} \sim \int \!\!\!\!\! D(z) \, dz \, / \, \sqrt{M_{fit}^2 - m_T^2}$$
 with $D(z) \sim z^\alpha \, (1-z)^\beta, \ z = p_t^{\tau - jet} / p_t^{\tau}$

$$M_{fit} = 300.8 + 1.2 \text{ GeV}$$

 $M_{fit} = 301.2 + 4.0 \text{ GeV}$

H^+ mass determination as a function of tan β

in tbH^+ , $H^+ \rightarrow \tau V$

Systematic errors from energy scale for jets and $E_t^{\ miss}$ measurement

W -> τv may be used to determine the mass scale of $m_T(\tau\text{-jet}, E_t^{\text{miss}})$ measurement

50 significance contours for SUSY Higgses

ATLAS Potential for H^{\pm}

Relevant channels for ATLAS:

$$H^{\pm} \rightarrow \tau \nu$$

$$\rightarrow tb, t^*b$$

$$\rightarrow Wh, W^*h$$

Production: $m_{H^{\pm}} < m_t$

$$\begin{array}{ccc} pp & \longrightarrow & t\bar{t} \\ t & \longrightarrow & H^{\pm}b \\ \bar{t} & \longrightarrow & Wb \end{array}$$

Production: $m_{H^{\pm}} > m_t$

$$\begin{array}{ccc} gb & \longrightarrow & tH^{\pm} \\ gg/qq' & \longrightarrow & tH^{\pm}b \end{array}$$

With $t \longrightarrow Wb$. For final states up to 3 b-tags, both processes contribute.

$$pp \to tH^{\pm}, \ t \to jjb, \ H^{\pm} \to \tau\nu_{\tau} \left(m_{H^{\pm}} > m_{t}\right)$$

Thus requires a multi-jet trigger and a τ -trigger! Also good τ identification efficiency and jet rejection

- Signal, $H^{\pm} \to \tau^+ \nu$: $\tan \beta = 40$, $m_{H^{\pm}} = 250$ GeV, $\sigma \times \text{BR} = 0.91$ pb.
- Backgrounds:

-
$$pp \to t\bar{t} \to WbWb$$
, $\sigma \times {\rm BR} = 84~{\rm pb}$
- $pp \to W + {\rm jets}$, $\sigma \times {\rm BR} = 1.64~10^4~{\rm pb}$
with one $W \to \tau \nu$ and the other $W \to jj$

• Take advantage of differences in τ polarizations: For 1-prong decays,

$$\stackrel{\stackrel{}{\smile}}{\longrightarrow} \stackrel{\stackrel{}{\leftarrow}}{\longleftarrow} \stackrel{\stackrel{}{\leftarrow}}{\longrightarrow} \stackrel{\stackrel{}{\smile}}{\longrightarrow} \stackrel{\stackrel{}{\smile}}{\longrightarrow} \stackrel{\stackrel{}{\leftarrow}}{\longrightarrow} \stackrel{\stackrel{}{\rightarrow}}{\longrightarrow} \stackrel{}$$

Harder π from $\tau \to \pi \nu$ and longitudinal ρ and a_1 in H^+ than W^+

Use inclusive τ decays (not just 1-prong) but with τ -polarization

$pp \to tH^{\pm}, \ t \to jjb, \ H^{\pm} \to \tau\nu_{\tau} \left(m_{H^{\pm}} > m_{t}\right)$

Take advantage of differences in kinematics

Reconstruct the transverse mass

• Channel almost background free. Discovery limited by signal size itself. Reach extended to \sim 700 GeV, $\tan\beta>10!$

$$t \to bH^{\pm} \to b\tau^{\pm}\nu \ (m_{H^{\pm}} < m_t)$$

Signal:

$$pp \rightarrow t\bar{t}$$
 $t \rightarrow bH^{\pm} \rightarrow b\tau^{\pm}\nu_{\tau} \rightarrow b$ hadrons ν_{τ}
 $\bar{t} \rightarrow bW^{\pm}(H^{\pm}) \rightarrow bl^{\pm}\nu_{l}(l^{\pm}\nu_{l}\nu_{\tau})$

- Backgrounds: $pp \to t\bar{t}$, $W + {\rm jets}$, $b\bar{b}$
- Search for 1 hadronic τ , 1 isolated lepton, \geq 3 jets (with 2 b-tagged)
- $m_{H^{\pm}}$ cannot be reconstructed. Signal appears as an excess of au leptons
- $\tan \beta = 5$ and $m_{H^\pm} = 130$ GeV, $\sigma \times \text{BR} = 13.1$ pb $\sim 1200~\tau$ from H^\pm $\sim 2500~\tau$ from W^\pm ~ 3400 fake τ 's Significance = 6.6 (3% systematics on fake τ efficiency)
- Discovery possible for $m_{H^\pm} < m_t 20$ GeV over most of the $\tan\beta$ range.

$$pp \to tH^{\pm} \ (m_{H^{\pm}} > m_t)$$

$$H^{\pm}
ightarrow ar{t}b$$
, $t
ightarrow Wb
ightarrow l
u_l b$ and $ar{t}
ightarrow Wb
ightarrow jjb$

- Signal: $\tan\beta=30$, $m_{H^\pm}=250$ GeV, $\sigma \times {\rm BR}=1.2$ pb.
- Background: $pp \rightarrow t\bar{t}b$, $\sigma \times \mathrm{BR} = 228~\mathrm{pb}$
- 11, 3 b-tagged jets and at least 2 non b-jets
- $W \to l \nu$ and $W \to j j$
- ullet $t_1
 ightarrow l
 u b_1$ and $t_2
 ightarrow j j b_2$ inside mass window
- Reconstruct m_{t_1b} and m_{t_2b}

$$\mathcal{L}=30~\mathrm{fb^{-1}}$$
, $\tan\beta=30$ and $m_{H^\pm}=250~\mathrm{GeV}$:

- Signal = 336 events in $m_{H^\pm} \pm 2 \times 37 \; {\rm GeV}$
- S/B = 0.21
- $S/\sqrt{B} = 8.4$

Discovery possible up to 400 GeV ($\tan \beta > 15$)

ATLAS discovery Potential for H^{\pm}

Discovery relies on: $H^\pm \to au
u$ and on $H^\pm \to tb$

Charged Higgs via s-channel production in CMS

Production through: $q\overline{q}' \rightarrow H^+ \rightarrow \tau V$

- Cross sections for signal and backgrounds

LO + NLO calculation including 2 -> 2 and 2 -> 3 processes

PYTHIA for fragmentation

TAUOLA for τ polarization

CMSJET for detector simulation

 charged Higgs can be produced in s-channel process due to light quarks interaction

$$qq' \to H^{\pm}, \quad q(q') = d, u, s, c, b$$

• $H^{\pm} \to au
u_{ au}$ channel

ullet au polarisation for any aneta au-lepton from H^\pm decay has polarisation opposite to SM case

$$\mathcal{L}_{SM} \propto \bar{\nu} \ (P_R \gamma^{\alpha} P_L) \tau \quad \mathcal{L}_H \propto \bar{\nu} \ P_R \tau$$

SM
$$\tau_L(\leftarrow)$$
 \Rightarrow $\nu_L(\leftarrow)\pi$ \Rightarrow $p_{\pi} \ll p_{\tau}, p_{\nu} \sim p_{\tau}$
H $\tau_R(\rightarrow)$ \Rightarrow $\nu_L(\leftarrow)\pi$ \Rightarrow $p_{\pi} \sim p_{\tau}, p_{\nu} \ll p_{\tau}$

• uncertainty in the cross section s-channel production cross section, $q\bar{q}'\to H^\pm$, has large uncertainty due to masses of light quarks

$$\sigma(\bar{q}' \to H^{\pm}) \propto (m_u^2 \cot^2 \beta + m_d^2 \tan^2 \beta)$$

for
$$M_H=300$$
 GeV and $\tan\beta=30$
$$m_d=m_u=300 \text{ MeV} \quad \sigma(H^\pm\to \tau\nu)\approx 1.6 \text{ pb}$$

$$m_d=9$$
, $m_u=5~{\rm MeV}~~\sigma(H^\pm o au
u)pprox 0.07~{\rm pb}$

ullet we use RPP values for m_q

$$m_d = 9 \; {
m MeV} \hspace{0.5cm} m_s = 150 \; {
m MeV} \hspace{0.5cm} m_b = 4.8 \; {
m GeV}$$
 $m_u = 5 \; {
m MeV} \hspace{0.5cm} m_c = 1.25 \; {
m GeV}$

$$M_H = 200 \text{ GeV} \text{ and } \tan \beta = 30, \quad 60$$

$\tan eta$	1	10	30	50
Γ , GeV	2.83	0.26	2.3	6.6
Br, %	0.015	16	16	16
σ , pb	3×10^{-5}	0.078	0.85	2.1

background processes

$$\diamond W^{\pm}(\to \tau \nu)$$

two intervals on $\sqrt{\hat{s}}$ are used

$$W(W)$$
 : 30 GeV $<\sqrt{\hat{s}}<$ 150 GeV and

$$W(H):$$
 150 GeV $<\sqrt{\hat{s}}<\sqrt{S_{pp}}$

- $\diamond t\bar{t}$ production
- $\diamond Wbar{b}$ production

$k_{\perp min} =$	10 GeV ,	$\sqrt{\hat{s}_{cut}} =$	$150~\mathrm{GeV}$
-------------------	-----------------	--------------------------	--------------------

	P_0	$\sigma(2 \rightarrow 2)$	$\sigma(2 \to 3)$	σ_{tot}
H^\pm	19.4	0.85	0.73	1.0
$W^{\pm}(H)$	16.0	21.1	17.3	26.0
$\overline{W^{\pm}(W)}$	11.4	1.8×10^4	1.6×10^{4}	2.4×10^4
$\overline{tar{t}}$				830
$Wbar{b}$				400

- signal/background separation
 - \diamond explicitly one τ -jet, one charged prong

$$E_{prong} > 10$$
 GeV, $R_{cone} = 0.4,\, r_{ECAL} = 0.15,$ $E_{ECAL}/E_{TOT} > 0.92$

- \diamond $R_H = E_{prong}/E_{\tau} > 0.85$
- \diamond no additional hadronic jets with $P_{\top}(J) > 20 \text{ GeV}$
- \diamond $E_{Tmis}, E_{T\tau} > 50,60 \text{ GeV}$
- $\int \mathcal{L} = 30 \text{ fb}^{-1}$, $M_H = 200 \text{ GeV}$, $R_H > 0.85$

cut	Bkg	30	$\frac{S}{S+B}$	50	$\frac{S}{S+B}$
R_H	3.3×10^{6}	1366	0.75	3304	1.82
$E_T > 50$	2872	505	9.2	1222	22.8
$E_T > 60$	1693	350	8.55	848	20.6

$$M_{\top} = 2P_{\top \tau} E_{Tmis} (1 - \cos \phi_{\tau E_{Tmis}})$$

• signal and backgrounds have similar shapes W^{\pm} is produced mainly in light quarks annihilation, since $N(u,d)>N(\bar{u},\bar{d})$

$$\sigma(W^+) > \sigma(W^-) \Rightarrow N(\tau^+) > N(\tau^-)$$

 H^\pm is produced due to interaction of heavy s,c,b quarks, since $N(Q)=N(\bar{Q})$

$$\sigma(H^+) \approx \sigma(H^-) \Rightarrow N_H(\tau^+) \approx N_H(\tau^-)$$

$$A_{\tau} \equiv \frac{N(\tau^+) - N(\tau^-)}{N(\tau^+) + N(\tau^-)}$$

$$R_H = 0.85, E50 \equiv E_T > 50, E60 \equiv E_T > 60$$

cut	$A_{\tau}(W)$	$A_{ au}(H)$, 30	$A_{ au}(H)$, 50
R_H	0.11 ± 0.001	0.110 ± 0.001	0.110 ± 0.001
E50	0.189 ± 0.019	0.167 ± 0.017	0.145 ± 0.016
E60	0.234 ± 0.025	0.197 ± 0.023	0.163 ± 0.020

Conclusions

Charged Higgs can be discovered in the process

gg ->
$$tbH^+$$
, H^+ -> τv , τ -> $hadrons+v$, t -> qqb

in a large part of the parameter space:

$$\tan \beta \gtrsim 10 \text{ at } m_{H+} \sim 200 \text{ GeV}$$

 $\tan \beta \gtrsim 20 \text{ at } m_{H+} \sim 400 \text{ GeV}$

- Mass determination may be possible with ≤ 2% precision,
 preliminary result systematics still to be understood
- **■** With H⁺ -> tb discovery possible up to ~ 400 GeV, $\tan \beta > 15$
- \Box $\Gamma(\mathbf{H}^+ \to \mathbf{tb}) / \Gamma(\mathbf{H}^+ \to \tau \nu)$ could provide a measurement of $\tan \beta$